Structure d’un test
Il n’y a que
deux formes possibles pour un test ; la première est la plus simple, la seconde la plus complexe.
Toujours est-il que la structure d’un test est relativement claire. Dans la forme la plus simple, arrivé à la première ligne (Si… Alors) la machine examine la valeur du booléen. Si ce booléen a pour valeur VRAI, elle exécute la série d’instructions. Cette série d’instructions peut être très brève comme très longue, cela n’a aucune importance. En revanche, dans le cas où le booléen est faux, l'ordinateur saute directement aux instructions situées après le FinSi.
Dans le cas de la structure complète, c'est à peine plus compliqué. Dans le cas où le booléen est VRAI, et après avoir exécuté la série d'instructions 1, au moment où elle arrive au mot « Sinon », la machine saute directement à la première instruction située après le « Finsi ». De même, au cas où le booléen a comme valeur « Faux », la machine saute directement à la première ligne située après le « Sinon » et exécute l’ensemble des « instructions 2 ». Dans tous les cas, les instructions situées juste après le FinSi seront exécutées normalement.
En fait, la forme simplifiée correspond au cas où l’une des deux « branches » du Si est vide. Dès lors, plutôt qu’écrire « sinon ne rien faire du tout », il est plus simple de ne rien écrire. Et laisser un Si... complet, avec une des deux branches vides, est considéré comme une très grosse maladresse pour un programmeur, même si cela ne constitue pas à proprement parler une faute.
Exprimé sous forme de pseudo-code, la programmation de notre touriste de tout à l’heure donnerait donc quelque chose du genre :
3. Qu’est ce qu’une condition ?Cette définition est essentielle ! Elle signifie qu’une condition est composée de trois éléments :
* une valeur
* un opérateur de comparaison
* une autre valeur
Les valeurs peuvent être a priori de n’importe quel type (numériques, caractères…). Mais si l’on veut que la comparaison ait un sens, il faut que les deux valeurs de la comparaison soient du même type !
Les opérateurs de comparaison sont :
* égal à…
* différent de…
* strictement plus petit que…
* strictement plus grand que…
* plus petit ou égal à…
* plus grand ou égal à…
L’ensemble des trois éléments constituant la condition constitue donc, si l’on veut, une affirmation, qui a un moment donné est VRAIE ou FAUSSE.
A noter que ces opérateurs de comparaison peuvent tout à fait s’employer avec des caractères. Ceux-ci sont codés par la machine dans l’ordre alphabétique (rappelez vous le code ASCII vu dans le préambule), les majuscules étant systématiquement placées avant les minuscules. Ainsi on a :
exercices
exercice http://www.pise.info/algo/enonces3.htm#En3.1
4. Conditions composées Certains problèmes exigent parfois de formuler des conditions qui ne peuvent pas être exprimées sous la forme simple exposée ci-dessus. Reprenons le cas « Toto est inclus entre 5 et 8 ». En fait cette phrase cache non une, mais deux conditions. Car elle revient à dire que « Toto est supérieur à 5 et Toto est inférieur à 8 ». Il y a donc bien là deux conditions, reliées par ce qu’on appelle un opérateur logique, le mot ET.
Comme on l’a évoqué plus haut, l’informatique met à notre disposition quatre opérateurs logiques : ET, OU, NON, et XOR.
* Le ET a le même sens en informatique que dans le langage courant. Pour que "Condition1 ET Condition2" soit VRAI, il faut impérativement que Condition1 soit VRAI et que Condition2 soit VRAI. Dans tous les autres cas, "Condition 1 et Condition2" sera faux.
* Il faut se méfier un peu plus du OU. Pour que "Condition1 OU Condition2" soit VRAI, il suffit que Condition1 soit VRAIE ou que Condition2 soit VRAIE. Le point important est que si Condition1 est VRAIE et que Condition2 est VRAIE aussi, Condition1 OU Condition2 reste VRAIE. Le OU informatique ne veut donc pas dire « ou bien »
* Le XOR (ou OU exclusif) fonctionne de la manière suivante. Pour que "Condition1 XOR Condition2" soit VRAI, il faut que soit Condition1 soit VRAI, soit que Condition2 soit VRAI. Si toutes les deux sont fausses, ou que toutes les deux sont VRAI, alors le résultat global est considéré comme FAUX. Le XOR est donc l'équivalent du "ou bien" du langage courant.
J’insiste toutefois sur le fait que le XOR est une rareté, dont il n’est pas strictement indispensable de s’encombrer en programmation.
* Enfin, le NON inverse une condition : NON(Condition1)est VRAI si Condition1 est FAUX, et il sera FAUX si Condition1 est VRAI. C'est l'équivalent pour les booléens du signe "moins" que l'on place devant les nombres.
Alors, vous vous demandez peut-être à quoi sert ce NON. Après tout, plutôt qu’écrire NON(Prix > 20), il serait plus simple d’écrire tout bonnement Prix=<20. Dans ce cas précis, c’est évident qu’on se complique inutilement la vie avec le NON. Mais si le NON n'est jamais indispensable, il y a tout de même des situations dans lesquelles il s'avère bien utile.
On représente fréquemment tout ceci dans des tables de vérité (C1 et C2 représentent deux conditions, et on envisage à chaque fois les quatre cas possibles)
exercices
exercice 1 http://www.pise.info/algo/enonces3.htm#En3.2
exercice 2 http://www.pise.info/algo/enonces3.htm#En3.3
5. Tests imbriqués Graphiquement, on peut très facilement représenter un SI comme un aiguillage de chemin de fer (ou un aiguillage de train électrique, c’est moins lourd à porter). Un SI ouvre donc deux voies, correspondant à deux traitements différents. Mais il y a des tas de situations où deux voies ne suffisent pas. Par exemple, un programme devant donner l’état de l’eau selon sa température doit pouvoir choisir entre trois réponses possibles (solide, liquide ou gazeuse).
Une première solution serait la suivante :
Nous avons fait des économies : au lieu de devoir taper trois conditions, dont une composée, nous n’avons plus que deux conditions simples. Mais aussi, et surtout, nous avons fait des économies sur le temps d’exécution de l’ordinateur. Si la température est inférieure à zéro, celui-ci écrit dorénavant « C’est de la glace » et passe directement à la fin, sans être ralenti par l’examen d’autres possibilités (qui sont forcément fausses).
Cette deuxième version n’est donc pas seulement plus simple à écrire et plus lisible, elle est également plus performante à l’exécution.
Les structures de tests imbriqués sont donc un outil indispensable à la simplification et à l’optimisation des algorithmes.
exercices
exercice 1 http://www.pise.info/algo/enonces3.htm#En3.4
exercice 2 http://www.pise.info/algo/enonces3.htm#En3.4
exercice 3 http://www.pise.info/algo/enonces3.htm#En3.6
6. De l’aiguillage à la gare de tri « J'ai l'âme ferroviaire : je regarde passer les vaches » (Léo Ferré)
Cette citation n’apporte peut-être pas grand chose à cet exposé, mais je l’aime bien, alors c’était le moment ou jamais.
En effet, dans un programme, une structure SI peut être facilement comparée à un aiguillage de train. La voie principale se sépare en deux, le train devant rouler ou sur l’une, ou sur l’autre, et les deux voies se rejoignant tôt ou tard pour ne plus en former qu’une seule, lors du FinSi. On peut schématiser cela ainsi :
Mais dans certains cas, ce ne sont pas deux voies qu’il nous faut, mais trois, ou même plus. Dans le cas de l’état de l’eau, il nous faut trois voies pour notre « train », puisque l’eau peut être solide, liquide ou gazeuse. Alors, nous n’avons pas eu le choix : pour deux voies, il nous fallait un aiguillage, pour trois voies il nous en faut deux, imbriqués l’un dans l’autre.
Cette structure (telle que nous l’avons programmée à la page précédente) devrait être schématisée comme suit :
Soyons bien clairs : cette structure est la seule possible du point de vue logique (même si on peut toujours mettre le bas en haut et le haut en bas). Mais du point de vue de l’écriture, le pseudo-code algorithmique admet une simplification supplémentaire. Ainsi, il est possible (mais non obligatoire, que l’algorithme initial :
7. Variables Booléennes Jusqu’ici, pour écrire nos des tests, nous avons utilisé uniquement des conditions. Mais vous vous rappelez qu’il existe un type de variables (les booléennes) susceptibles de stocker les valeurs VRAI ou FAUX. En fait, on peut donc entrer des conditions dans ces variables, et tester ensuite la valeur de ces variables.
Reprenons l’exemple de l’eau. On pourrait le réécrire ainsi :
A priori, cette technique ne présente guère d’intérêt : on a alourdi plutôt qu’allégé l’algorithme de départ, en ayant recours à deux variables supplémentaires.
* Mais souvenons-nous : une variable booléenne n’a besoin que d’un seul bit pour être stockée. De ce point de vue, l’alourdissement n’est donc pas considérable.
* dans certains cas, notamment celui de conditions composées très lourdes (avec plein de ET et de OU tout partout) cette technique peut faciliter le travail du programmeur, en améliorant nettement la lisibilité de l’algorithme. Les variables booléennes peuvent également s’avérer très utiles pour servir de flag, technique dont on reparlera plus loin (rassurez-vous, rien à voir avec le flagrant délit des policiers).